I

VOL

E

i

D-TR-68-143,

L
9
c
Q

E
E

ESD RECORD COFY

COPY

FII

] RETURN TO
ESD-TR-68-143, Vol. | SCIENTIFIC & TECHNICAL INFORMATION DIVISION
(ESTI), BUILDING 1211
]
EVOLUTIONARY SYSTEM FOR DATA PROCESSING
SYSTEM DESCRIPTION

Charles T. Meadow ESD ACCESSION LIST
Douglas W. Waugh ESTI Call No. . M b1 089
Gerald F. Conklin » — / L :
Forrest E. Miller Copy No. . of cys.
AL 61082
January 1968 -
5L

COMMAND SYSTEMS DIVISION
ELECTRONIC SYSTEMS DIVISION

AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE

L. G. Hanscom Field, Bedford, Massachusetts

This document has been
approved for public release and
sale; its distribution is
unlimited.

(Prepared under Contract No. F19628-67-C-0254 by Center for Exploratory
Studies, International Business Machines Corporation, Rockville, Maryland.)

Amé7cf37

LECAL NOTICE

When U.S. Covernment drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

FSC 68-0688/3053

ESD-TR-68-143, Vol. |

EVOLUTIONARY SYSTEM FOR DATA PROCESSING
SYSTEM DESCRIPTION

Charles T. Meadow
Douglas W. Waugh
Gerald F. Conklin
Forrest E. Miller

January 1968

COMMAND SYSTEMS DIVISION
ELECTRONIC SYSTEMS DIVISION

AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE

L. G. Hanscom Field, Bedford, Massachusetts

This document has been
approved for public release and
sale; its distribution is
unlimited.

(Prepared under Contract No. F19628-67-C-0254 by Center for Exploratory
Studies, International Business Machines Corporation, Rockville, Maryland.)

FOREWORD

This report presents the results of a study of the specifications
for an information system intended to support the design, production
and maintenance of large computer programming systems. Called
Evolutionary System for Data Processing, or ESDP, it was begun as an
internal IBM project in 1965 by the Center for Exploratory Studies
of the Federal Systems Division and continued under Air Force
sponsorship during 1967 and early 1968.

This work has been performed under contract number F19628-67-
C0354 for the Electronic Systems Division, U.S. Air Force Systems
Command. The project monitor was Mr. John Goodenough, ESLFE.

The authors wish to express their appreciation far the encourage-
ment and assistance provided by Dr. John Egan, formerly of ESD, and
their colleagues Dr. Harlan D. Mills and Mr. Michael Dyer.

This report is in four volumes: Volume 1, System Description:
Volume 2, Control and Use of the System; Volume 3, The CAINT Executive
Language and Instruction Generator; and Volume 4, Programming Specifica-
tions. This report was submitted on January 31, 1968.

This report has been reviewed and is approved.

’-t) ’-) c
Sulvia K Mager Ll Poffaonln,

, i llimo
SYMVIA R. MAYER WILLIAM F. HEISLER, Col, USAF
Project Officer Chief, Command Systems Division

ii

ABSTRACT

TSPP is a proposed system whose purpose is to acquire,
store, retriave, publish and disseminate all documentation,
exclusive o0f graphics, concerned with a large computer
programming activity. Documentation is deemped to consist, not
only of final or formally publishei after-the-fact reports, bhut
of workinag files, design and change notices, informal drafts,
management reports--in fact, the entire recoriable rationale
underlying a programming systen. Maximum Aattention has bheen
concentrated on the means of acauiring and organizing
documentation. Two major, complementary approaches ara proposad.
The first is called Program Analysis and 1s 31 process of
extracting documentation directly from comnleted programs. The
second is called Computer Assisted IntarroJation and is a procass
of eliciting information directly from the programmer, throuagh
on-line communication terminals. The former provides canonical
dat a about the program's structure. The latter proviies
explanatory material about all aspects of the proaram, and ir the
absence of canonical data, may provide tertative structural
information as well. The conclusion o0f the studv group is that
ESDP is a feasible concept with present-day technology and that
it will materially benefit using organizations in the production
of programs anil in guiding their ~volutior as requirements
change. Tts value will bhe greater for larger organizations,
whose internal communications difficulties tend to «cause trualy
gigantic inefficiencies. 1Its implementation as a suppnrt svstem
for such rprojects would require a sianificant guantun of
investment in order to produce these benafits and is predicated
on the use of a computer system dedicated solely to the use of
ESDP.

iii

Volume I

System Definition

I

INTRODUCTION AND SUMMARY

The Problem Addressed
The Long Term Solution
Areas of Concentration of the Study

Steps Toward an Operational Prototype

II

ACQUISITION OF INFORMATION

Program Analysis
Interrogation

Desiqgn Interrogation
Changes in Documentation
Incremental Documentation

Reconciliation

I1T

DISSEMINATION AND ANALYSIS

Information Retrieval
Selective Dissemination
Instruction

Management Analysis

iv

10

10

20

22

28

28

33

36

36
37

37

38

TV

EXTEXSTONS OF THE BASTIC SYSTEM

1. Tntroiuction
2. rComputar Assisted Test Design ind dypothesis Testing
2, Computer issisted Proaramminag
v
RIBTLIOGRAPHY
ILLUSTRATIONS
Figure
1 A Program Organization
2 Sample Interrogation
3 ESDP-CAINT Program Documentation for
ALTATRFLD
4 Sequence Table
5 A Job Structure
TABLES
I Classification of Data Usage by a Program
s Program Report Outline (5 pages)

40

40
40

46

50

Page
11

24

26
31

35

14

15

I

INTRODUCTION AND SUMMARY

1. The Problam Addressed. ESDP, Evolutionary Systenm for Data
Processing, is an information system to be used to support the
design, 1implementation and eventual moiification of large
computer systems. As presently conceived, ESDP would be used
actively to acquire documentation of programs, data files and
tests at three stages: design, after completion of the prograns,
ani after modification. Information, once acquired, is available
for retrieval, for dissemination, for incorporation in reports,
for use in instruction and for wuse 1in improving subsequent

information acquisition processes. The primary users of the
system will be programmers, whose documentation tasks will be
lightened; their supervisors, who will have more up to date

information about program status than is normal; systems analysts
who will be able to see the result of design change or s3see
programming problems that force a design change; anl management,
who will have more current and more accurate information on
progress, manpower utilization, computer utilization, etc. An
instructional subsystem will help alleviate the inevitable
problem of personnel turnover by providing instructional material
compiled from the basic documentation at little cost in manpower.

LarJye programming projects are characterized by a truly
stagqgering problem in human communication. Management dacisions
tend not to flow down to working-level programmers in terms most
meaningful to them: what do I have to do to my program? What
help will T get? How much machine time will be available next
month? Almost trivial decisions made by a programnmer, including
implicit decisions not to do something (e.g., not to error-check
an input item), can have disastrous impact on other programmers.
Design errors do occur but the thought given to their resolution
is not always commensurate with the magnitude of the problenm.
Trends toward exceeding core allocation or program running time
might not be recognized until so late that massive reprogramming
is needed.

0f all problems, the one ESDP is primarily aimed at
solving 1is that of change 1in a system. The problem is this:
given a neesd for a change in a proqram, how do we find what
specific changes to make, what else in the systen will be
affected, how to retest the program, ani how to modify the
documentation.

We must emphasize that work on this project has been
concentrated on support of large proqramming systems, where the
formal Aocumentation requirements are stringent, and the internal
communication problems ' overpowerinj. Wwhile many of the
techniques to be discussed would be valid if applied to smaller
systems, a system of the size and scope described here is
intended for the larger problem. A short discussion is given in

Section T.4 of a prototype which would not perform all functions
but would be more economical for smaller systems and for further
testing of overall concepts.

The FESDP system described in this report would perfornm
the following functions:

a. Active acquisition of documentation. The system
would not passively await submission of information. It would
actively elicit it.

o 18 Storage and retrieval of documentation. All
information in the system would be available for retrieval by
qualified users.

Co Generation and administration of instructional
material. ESDP would contain an instructional subsystem through
which existing documentation could be converted into

instructional form and then computer assisted instruction courses
administered.

d. Production of hard copy documents. ESDP, 1in
addition to providing a retrieval system, would produce the
written documentation usually required of a programming project.
No attempt should be made to replace this form of documentation.
Rather, the traditional form of documentation would be augmented
by the retrieval and instruction systenms.

Extensions of the system can provide for:
e. Computer assisted test planning and documentation.

f. Hypothesis testing, 1in which system users can
analyze the consequences of proposed changes to the systen.

qe Computer assisted programming in which many of the
basic concepts presented here are wused to provide active
assistance 1in writing object system programs (the object systen
is the program system being documented).

To accomplish these objectives, in addition to the
further development work and programming, a using orqganization
would have to provide a time-shared or multi-programmed computer,
probably dedicated to the ESDP documentation function. If not
entirely dedicated, then it would probably share time with
functions other than debugging of the object program system. The
preference against sharing time with the ohject system is bhased
on the assumption that shortages of machine time would always be
resolved in favor of the object system, even to the point of
total exclusion of documentation. Also required would be an
aggressive project leadership willing and anxious to try a
radically new approach to’'an old problem, willing to encourage
the use of the system and to show patience with its weaknesses.

.

2. The Long Term Solution. The solution to the problems of
assisting programmers in the production of their programs, and in
providing th2 needed communication and documentation, 1is to

provide an information system with these features:

o It should be a depository for all recordable
information about the object system (the proqgram
being produced).

o) It should he an active system. It should take the
initiative in seeking ount information from
programmers, analysts and manaqers and 1in

disseminating that information to all concerned.

o] Tt should be comprehensive. The system shoulA
encompass all the documentation about the objact
system, although not necessarily in machine-

readable form.

o It should be accessible. Information can he

gotten from the system by:

information retrieval queries

aﬁtomatic report compilation

automatic dissemination

instructional progranms.
Users may readily shift mrodes--to ask for
information while entering documentation, tor

axample--so that the system 1is always ready to
answer whatever question a user has.

o] It should be self-adaptive. The information
acquisition process is a function of the data base
content and structure. Since the process of

acquisition changes the data base, it follows that
the acquisition process changes as a function of
previously acquired information.

In more detail, a <complete ESDP would have the
following features:

a. Acquisition

Information would be acquired in two ways: by
programmers or others responding to computer generated
interrogations through remote consoles [1], and by programmers

submitting completed programs to a program analysis [2].
Information not explicitly stored could be generated. For
example, flow charts could be constructed from information
acquired by either method. Changes to documentation or to

programs stored within the system could be submitted through
interrogation.

be Storage

All machine readable documentation and all objact
programs should be stored as part of the ESDP data base. Not all
this information need be continuously on-line, but all should be
available, say from tape or disk cabinets, within a few minutes
of the time it is requested.

Ca Dissemination

A selective dissemination system should immediately
transmit newly acquired information to interested readers. User
interest profiles could be entered by individuals, management (on
behalf of others) or even generated by ESDP., As an example of
the use of automatically-generated interest profiles, assume that
program A is modified to make use of an output of program B,
while previously there had been no connection between the two.
The programmers involved should be automatically added to
distribution lists for each other's documentation.

d. Information Retrieval

Undar countless sets of circumstances, system users
will want to recover information immediately from the ESDP data
base. An information retrieval system should be included in ESDP
which will serve as an on-line system responsive to user queries
and will also serve as a subsystem of other ESDP programs.

e. Generate Documentation

More or less «conventional, hard copy documentation
should be a major product of ESDP. The availability of a

dissemination system and an on-line retrieval system will
certainly have some effect on the form, content, and frequency of
issue of printed reports. However, it seems impractical to

assume that electronic displays will completely replace printed
matter in, say, the next five to ten years.

f. Provide Instruction

The documentation contained in the ESDP data Dbase
should be convertible into instructional materials. A qualified
instruction or training specialist must supervise the process,
but his work would be made easier by the ESDP system itself.
Both computer assisted 1instruction (CAI) courses and printed
programmed instruction (PI) texts could be generated by a similar
process. TInstruction courses so generated would require far less
instruction time to prepare and could be much more easily updated
than conventionally-written CAI or PI courses.

gq. Test Planning

ESDP should actively assist in the design,
documentation, and preparation of program tests, at all levels
from small program modules to 1large assembly tests. The
information available to ESDP about a program contains much that
is useful to the test designer. ESDP could assist him in
planning what program segments or modules to test in any one run,
what data values are to be tried, and what programs or segments
are 1independent of what others, which information can be used to
reduce the nuaber of test runs. Finally, the system should
enable the test planner to assemble a set of test data. The
study of test planning was not a task under the contract.
However, sufficient interest was generated to create an I3M-
sponsored study in the area to be undertaken in 1968.

h. Hypothesis Testing

Related to the concept of test planning, hypothesis
testing is th2 investiqgation or verification of assumptions about
how the system performs. The technique is intended to he able to
provide answers to questions that are phrased in external, or
per formance-oriented terms, rather than in terms of specific

program threads or control decisions. It would be more for
system users to determine how the programs would perform 1in a
hypothetical situation than for programmers to test their

programs. This topic, also, was not a part of the study FJust
completed but is believed to be a valid extension of the study.

3. Areas of Concentration of the Study. The objective of the
recently concluded study was to produce specifications for an
operational ESDP where the term "specification”" was interpreted
as a broad, conceptual-level description. Because of the
advanced nature of the project not all areas were given equal
attention nor explored to the same depth. Indeed, test planning
and hypothesis testing were conceived as applications during the

study but not pursued as part of the study.

Major emphasis was placed on those areas which we f2lt
were critical for proving feasibility of ESDP. These were:

Acquisition of design information

Acquisition of program documentation
On-line information retrieval
Document generation

Instruction

The acquisition of design information is to be carried
out by interrogation of programmers, systems analysts or
managers. It elicits their design plans for programs and data
base elements. Design interrogations do not differ in concept
from interrogations based upon the existence of an object program
but they would be based only on information collected during
previous design interrogations.

The acquisition of program documentation is, by
def inition, based upon the existence of an object program. Tt is
to be done in two ways: first, by direct analysis of the progranm
to determine 1its internal structure, its interfaces with other
programs, and its data usage; second, by interrogation of the
programmer based upon data extracted from his program. We
repeat--this interrogation is not inherently different from a
design interrogation but 1is based on knowledge of the proqram,
hence can be much more concise and informed.

On-line information retrieval, while not a new concent,
was an object of attention on this project because of the need to
integqrate retrieval with the interrogation and document
generation functions.

Documents produced through ESDP would be hierarchically

organized and primarily textual 1in content. They would not
simply be tables, such as the cross-reference 1listing produced
with program compilations. We have not investigated flow

charting programs because of the existence of several quite
versatile and effective programs with which ESDP could be made to
interface [3,4]. ESDP printed documents are intended to supplant
all other forms of printed documentation.

The concurrent and semi-automated generation anqd
modification of instructional programs with the design and
development of the object system is a significant new approach.
It has the potential to make a major contribution toward reducing
communications failures and making more efficient use of people
on large projects.

4 Steps Toward an Operational Prototype. During the course of
this project, both under IBM sponsorship and U.S. Air Force
sponsorship, a considerable amount of experimental programming
was done. The programs, most of which were done in PL/I, have
never been assembled into a single, integrated system. To do so
would require some additional programming and some modification

to existing progranms. However, these tasks could be performed

and the result would be a prototype system performing most of the
functions delineated above although restricted 1in number of
terminals, size of data base, and sophistication of the
interrogation programs.

a. Programs Completed
The individual programs available now are:

(1) Program Analysis (PA). This program operates
on PL/I, 0OS Linkage Editor, and 0S/360 JCL programs only. T
breaks PL/T code down to the level of a segment (a straight-line
sequence of statements) and recognizes data occurrences in three
categories: SET, USED, and CONTROL. While an extension of the
data occurrence categories would be desirable the program is
useful as it stands. The data structure compiled by PA is not
now compatible with the other programs but it would be a minor
task to make it so.

(2) Design Interrogation. A program exists to
interrogate on program design and anotker on data set (file)
design. These two need only minor revision to be useful as

production programs. However, they were designed separately angd
do not interface, as they eventually should. That is, portions
of the data programs should be <callable from the proaran
documentation. Both programs make us=2 of the 1information
retrieval system described next.

(3) Information Retrieval. Actually a packaae of
subroutines these programs can:

0 Store and retri=ave data items
addressed by a hierarchical num-
ber

o Extract kXey words from A text

response and compile a key-word
index of a document

o Search the key-word index, using
Boolean logic, to retrieve ref-
erences.

These programs represent an extension and generalization of the
retrieval package associated with the original nroqram analysis
program.

(4) Report Generation. A "standard" report nmay
be defined, by providing a sequence of hierarchical information
element numbers, and a copy of this report may be generated at
any time by responding "//REPORT" to any interrogation question.
If a differently-constructed report is desired, the requestor nmay
specify which information elements he wants, and 1in what
sequence.

(5) Instruction Generation. An 1instruction
generation program is 1in a sufficiently advanced state of
debugging to be included in the basic package. When conmpleted,
it could bhe used, as well, for generation of any additional
interrogation programs needed in a prototype system.

b. Additional Requirements

These five programs or groups of programs would have to
be 1integrated and some operating rules (such as frequency of
updating) devised. In addition, two additional tasks would have
to be undertaken and a third is optional.

(1) Program Interfaces. 1In the larger ESDP, we
have assumed that all documentation is available, or can readily
be made available, on-line. This would be more difficult with a
prototype which would be presumed to be sharing a computer with
other progranms. A minimum amount of information about each
program in the system should be made available in a partitioned
data base. This minimum documentation would contain primarily
interface information so that if program A calls B, sufficient
information 1is available on-line to provide the documentor of A
the information he needs about B. Conversely, the interface data
could be used to verify that the <call to B was executed
correctly.

To accomplish this, the ESDP data base, upon which the
other programs are predicated, must be revised, and the
interrogation and program analysis programs also adjusted.

(2) Multi-terminal Operations. Some additional
programming is required to accommodate many terminals
concurrently where all are not involved in the same activity.
More than one terminal communicating with one program, even
though executing different program steps, is not a significant
problem. The use of PL/I which produces reentrant code plus the
Queued Telecommunications Access Method (QTAM) [5] of NS/360
vhich buffers incoming and outgoing messages makes this possible.
The problem arises when the terminals must communicate with
dif ferent programs that cannot both reside in high-speed memory

at once. This necessitates roll-out/roll-in for storaqge
allocation, a feature that 1is not now available but will be
standard in future releases of 0S/360. Time slicing does not

appear to be a signifcant problem at this time since ESDP
activities are not likely to seize the CPU for 1long periods of
time without being interrupted for input or output operations.

(3) Object Programming Langquage. In concent,
ESDP is applicable to programs written in any 1language although
some of the techniques, particularly program analysis, are
specially tailored to one language. So far, the 1language has
always been PL/I. To use ESDP with other languages, a new
program analyzer would be needed and possibly some revision to
the interrogation programs.

(4) Computer Requirements. The specific
configuration of hardware on which ESDP is to be run depends upon
such factors as the size of the object system, the documentation
requirements, the philosophy of the system management, etc., and,
therefore, was not considered a valid product of this stuiy.
However, since we have defined ESDP as a support system for large
(25 or more programmers) programming projects, we can make sone
rough estimates of hardware requirements based solely on our
experience ani knowledge of systems of that size.

We feel that a medium to large sized CPU (e.g., /360
Mod 40-50) should be made available for ESDP. It is aot
necessarily true that only ESDP can be run on this CPU, but we
feel that the same computer system shouli not be shared between
the object system and ESDP.

The system should be capable of supporting a minimum of
ten remote terminals, core requirements being closely related to
the number of terminals active concurrently.

Bulk storage for ESDP files may be the most critical
ESDP hardware requirement. Some minimum amount of file data must
be on-line at all times with a larger amount off-line on disk
packs, tapes, etc. A very rough guess at on-line bhulk storage
requirements is 30M bytes random access and 6A0M bytes serial
access.

Until such parameters as programming languaqe, number
of terminals, and computer configurations can be estabhlished, no
precise estimate of prototype production cost «can be given.
However, an effort of the same order of magnitude as the current
contract (3.5 man years) is reasonable.

IT

ACQUISITION OF INFORMATION

1. Program Analysis. Program analysis is the process by which
ESDP acquires structured information on a completed program. By
completed here we mean compilable, for the program analyzer does
not have the elaborate error-checking mechanisms of a compiler.
The object program used need not be complete 1in the sense of
having all code written.

There are four categories of structure information.
The first is concerned with the hierarchic organization of a
progranm. In Piqgure 1, programs B and C are contained in, hence
are hierarchically subordinate to, program A. B and C are at the
same level, neither containing the other. No such condition as
is 1illustrated by D can exist. A program is wholly contained in

or wholly indeapendent of another.

The second structural feature of interest 1is the
branching, or control, network. This is described by listing the
possible predecessors and successors of each program component.
Predecessors and successors are defined in terms of execution.
If program 3 branches to C, C is a successor of B, and B is a

predecessor of C.

Category three is data structure. This 1is one of
several instances where use of a high order language for the
object programs is of great benefit to FSDP, for these 1languages
require explicit specification of data sets. Data structure
information, then, is readily available to ESDP through progranm

analysis.

Finally, by analogy with the program control structure
there is a network of data occurrences. We record in this
network the mode of each occurrence of a data item name in a
program element. In early work only three types of occurrence
were recognized but for more advanced work, particularly in

program planning, a far more intricate analysis is necessary.

In the remainder of this section, the four structural
categories are discussed in greater detail.

10

Figure 1.

S

A Program Organization

11

e Program Hierarchy

A program seqgment is defined as a sequence of straight
line code, a set of statements or commands for which entry is
only possible at the first statement and branching 1is only
possible from the last statement. This is the smallest unit of
programming considered in work to date but we could go to the
individual statement without <changing the substance of this
description. A unit of programming is a program segment or any
set of program segments. Thus, a unit of programming (UOP) can
be as small as a single IF statement or as large as Operating
System/360. In general, we are concerned with acquiring and
publishing the same kind of documentation about a UOP at any
level but , in practice, we would vary the information with the
nature of the UOP.

The program hierarchy 1is represented by a set of
subordination relationships in the documentation record for each
UOP. For each UOP there will be a 1list of subordinate and
superordinate UOP's (downward and upward pointers).

b. Program Control Network

A successor of a UOP is any UOP, at any level, that may
be executed immediately after the first one. The number of
possible successors may be quite large, as might happen if a UOP
in PL/I ends with GO TO LABEL(I) when LABEL is the name of a
label array. The number of possible successors is the number of
elements of array LABEL. On the other hand, GO TO START has only
one successor.

The knowledge of what data variables, if any, control
the selection of the successor 1is important information in
documentation, debugging and test planning.

The program control structure 1is stored, as is the
hierarchy, by including ¢two 1lists in each UOP documentation
record. One list contains successors and one predecessors.

Ca. Data Structure

Data structure 1is generally more complex than program
structure. The 1language of data description tends to be
dependent wupon the programming language used. In general, what
is needed is the name of the data element, its type (whether
record, array, field, etcs) ¢ and its subordinate and
superordinate elements. In the case of arrays, the number of
elements 1is important and in the case of individual items (or
fields or variables) such information as:

12

Mode or type (fixed decimal, character
floating binary, etc.)

Length
Initial value

A data set, or file, is not fully described by its
hierarchical structure. The nature of the relationships hetween
elements, say two variables in a structure, must bhe made known,
but this cannot be determined through program analysis.

1. Data Occurrence Network

This information structure tells where data is used,
where it i1s changed, where it affects a branching decision. For
any UOP 1its data occurrence table represents a "black box"
description of that UOP--a statement of the input, the output,
and the variables governina choice of the next, or successor,
U0P. Table I shows a far more detailed system for describing
data occurrences than has been used in experimental work. Tt
should be understood that a given data element can occur in more
than one category within any UOP.

The complete program structure is describable in terms
of the record outlined in Table IT.

13

1.

Table I. Classification of Data Usage by a Progran

Context of Appearance

1.1

Assignment Statement
1.1.1 Computed Value
1.1.2 Argument

Control Statement
1.2.1 Variable I/0 Command
l.2.2 Branching or Transfer Command
1.2.2.1 Argument or condition statement (IF,
ON wen)
1.2.2.2 Iterative Control Variable (DO)
1.2.2.2.1 1Initial index value
le2.2.2.2 1Increnment
le2.2.2.3 Maximum value or limit
l1.2.2.3 Variable address

Subroutine/Function/Macro Calling Sequence
1.3.1 Transmitted to SR/Function/Macro
1.3.2 Received from SR/Function/Macro

Data Declaration Statement (or other non-executable
statement)
Input/Output
1.9.1 ' Inpul
1.5.1.1 Input Control Variable
1.5.1.2 Data Element read in
1.5.2 Output
1.5.2.1 Output Control Variable
1.5.2.2 Data Element written out or transmitted

Change Status

2.1

2.2

alue Changed by Containing Statement

1 vValue Directly Assigned by Assignment Statement
.2 Value Directly Changed by DO Statement
3

Value Directly Changed by Variable I/0 Statement

NN <
bt

Value not Changed by Containing Statement

Structural Role

3.1

3.2

DPata Element is a Structure or Array
Index or Subscript

3.2.1 Value of an Index

3.2.2 Element of an Index Term

Scalar Item

14

Table II. Program Report Outline

1a Identification

1.1 Author

1.2 Name of Program or System
1.3 Document Modification Data
la3el Modification Number
15352 Author of Modification
le3a3 Date of Modification
1.3.4 Date of Initial Entry
1.4 Level of Documentation
l.4.1 Designation

1.4.2 Program Type

2« Tntroduction

2.1 Program Summary

2.1:1 Description of Logic
2.1.2 Program Application
2.1.3 Program Organization
2.2 Entry

2.3 Exit

2. 4 Data

2:8.1 General Summary
2.4.2 Inputs

2.4.2.1 Summary of Inputs

15

Table II. Program Report Outline

2:0:2:2 Input Files

2:8.2.2.0.2 Def inition

2.4.3 Outputs

2485351 Summary of Outputs
2-.8.3.2 Output Files

2080 3.2.0 Output File Number
2:8.3.240.1 Name

2.%.3.2.n,.2 Definition

2.4.4 Internal Data

Leliclisll Summary of Internal Data
2.4.4.2 Internal Files and Data Sets
2.4.4.2.n Internal File Nunmber
2:.4.48.2.1n.1 Name

2ol 2ane2 Definition

3. Program or System Functions
P Description of Logic
3.2 External References

3s2an Reference Number

16

(Continued)

Table IT. Program Report Outline

4. Program or System Composition

4.1 General Description of Structure
4.2 Subordinate UOP

4.2.n Subordinate Number

§.2.n.1 Name

Ba2.n42 Function

Bi2ened Inputs to Subordinate

§.2.04 3.0 Input Number

Ies2.n.4 Outputs from Subordinate
u2eNolbani Output Number

Be2ahe®D Internal File of Subordinate
4.2.0.5.0 Internal File Number
4.2.n.6 Entry-Exit Conditions
§e2eNtebal Summary of Entry Conditions
§s2eNs642 Summary of Exit Conditions

Be24Na6e3 Type of Decision Governing Exit

(Continued)

B.2e00badal successor (if unconditional)

4.2.n.6.4 Exit Control Variables (if conditional)

Qe2enebolfen Control Variable Number

e2snabsd Successors to Subordinate (if conditional)

Be2olebaDal Successor Number

Be2esNaBeSaial Name

bhe2elebaDeNa? Control Conditions Causing Path

Be2eDabuSallic3 Purpose of Taking Path

17

Table II. Program Report Outline (Continued)

5. Control

5.1 Entry

Helal General Description of Entry

Sedied Entry Points (if program level)
Derdie 2wl Entry Point Number

S¢le2.m.1 Identification

Siala 2ol Conditions for Using Entry

Dalie 2 Tie3 Subordinate Containing Entry

5:1.2:n. U Predecessors

Bale2.neali.n Predecessor Number

Be2 Exit

5«22l Exit Conditions

PeZwlel General Description of Exit Conditions

Bel2ele? Type of Decision Governing Exit

Delali2.l Successor Program or System (if conditional)
Sndade Description of Decision Functions

Bel2elell Variables Controlling Decision (1f conditional)
$:251-8.0 Variable Number

De2alelanal Name

5«2.lalion.?2 Definition

s 0 Successors (if conditional)

924201 Name

He2e2.Ne2 Control Conditions Causing Path

52.2.1n.3 Purpose of Taking Path

18

Table IT. Program Report Outline (Concluded)

6. Data

6.1 General Summary

6.2 Inputs

6.2.1 Summary of Inputs

e Input File

6.2.2.n Tnput File Number
Be2a2.nal Name

6.222.N02 Source

6a2s2:sN6 3 Description of Content
Bo2e2snall Structure

6.3 Outputs

6.3.1 Summary of Outputs

62 Dutput Files

6.3.2.n Nutput File Number
be3e2efial Name

T T S Destination

W [T K Description of Content
Qeidei2uDell Structure

6.l Internal Data

6.1 summary of Internal Data
hall.2 Internal Files and Data Sets
6.4.2.n Internal File Number
6.l4.2.n.1 Name

Bella2aNe? Description of Content
6.4.2.n.3 Structure

19

2. Interrogation
Computer Assisted Interrogation (CAINT) is a computer
program system for man-machine communication.

Its principal function 1is to enable a
computer to elicit information from a man by
interrogating him--asking him a program of
questions where the program follows a logical
course depending both on information
available before the interrogation started
and on that gained during the interrogation.
The information acquired is intended to bhe
put to immediate use, 1in updating a data
bhase, generating reports, or driving other
interrogations.

During the course of an interrogation, the
interrogee will be given information as well
as asked questions, and he may ask his own
questions as well as provide answers. Thus,

a CAINT interrogation is truly
conversational, with information and
questions flowing in both directions. The

conversation, particularly in the machine-to-
man direction, 1is somewhat stereotyped, the
machine's versatility being 1limited by a

repertoire of generalized, fragmented
statements which are particularized and
asseambled for use as needed. The

conversational range of the computer, then,
depends upon a system user's versatility in
designing these statements -- a process
somewhat akin to computer programming. [1]

In planning an inférrogation program the designer must
constantly keep three objectives in mind: (1) that of acquiring
the set of information that best accomplishes the documentation
of a proqram, (2) that of assuring that the interrogation program
is thoroughly debugged, and (3) that the programmer or other user
who 1is responding to an interrogation understands the manner in
which elicited information is to be used. It should be <clear
that the successful application of ESDP to any project depends
heavily upon the degree to which these objectives are nmet.
However, they are essentially the same requirements imposed on
the development of any computer progranm.

The need for skill and accuracy on the part of an
interrogation programmer is no different from the same need in
conventional programming. Interrogation programming, as we shall
bring out, can be mechanically easier than conventional
programming, but properly ‘identifying obijectives and ensuring
proper user interface may be more difficult. Because this is the
primary channel for the entry of much information into ESDP, it
is highly important that wusers have skill 1in responding to

20

interrogations and in interpreting gquestions in terms of their
oWn programs.

Guided by the structure of the object
projram, and design information previously
contributed by the programmer and others,
CAINT interrogates a programmer about his own
program and elicits a detailed, up-to-date,
program description. It can also be used for
other highly structured reportiny activities
and for advanced educational proqrams. [1)]

CAINT, which was developed as a subsystem of ESDP
enables programmers to document programs while still at the
design level andi to add elaboration and explanation to
documentation acquired by program analysis. As we have pointed
out earlier, the process of interrogation 1is not logically
dif ferent for those two modes of operation. All that changes 1is
the wording of <questions, and possibly the choice of which
questions to ask.

An interrogation is based upon a lata structure. The
object of interrogation 1is to create, complete or modify this
structure. To this end a set of gquestions and question fragments
are prepared and a program 1is written which decides which
questions or combination of fragments to use, asks the assemhleqj
question, analyzes the response and, if valid, stores the
response in the data structure. 1In deciding what question to use
and in analyzing a response, the program may make use of any
programmable function of the data structure or of any other data
structure available to the program. Such a program is called an
interrogation program and it is written in the CAINT Executive
Language.

More details of interrogation will be brought ont
below. At this point we wish to emphasize the following
principles:

a. To carry out an 1interrogation, an 1interrogation
program must be written. This program uses any function of the
data base to make decisions, and results 1in acquiring new
information for storage in the data base.

b. Interrogation proqrams are intended to be readily
modified. A basic assumption 1is that each using organization
will have different needs or preferences from each other
organization, and CAINT 1is designed to accommodate these
dif ferences.

Ca Interrogation was originally conceived to operate
upon the results of program interrogation--to ask the programmer
for explanation of the 'structure of his program. Further

investigation suggested the value of interrogation as a desian
tool, for interrogating programmers about programs before their
completion, and as an instructional tool for presenting existing

21

information to the programmers.

3. Design Interrogation Program documentation is most valuable
when it 1is available to assist decision-makers and designers.
The point of greatest need for this assistance comes early in a
project, when there are no completed programs. Tt is during the
first few months when program interfaces are being specified,
files being designed, and schedules being laid out that valid
current documentation would be of most value and is least 1likely
to be available,

Fven at the earliest stages of system development,
designers will have ideas 1in mind about general progranm
structure, program interface and file structure. The fact that
these initial ideas will change in no way invalidates the need
for recording them and disseminating them as they are created.

Design interrogation has the same objective as progranm
analysis and interrogation--the acquisition of information about
program and data structure and explanatory text. Even so
primitive a program model as INPUT-COMPUTE-OUTPUT, if <coupled
with a 1list of files wused and produced, and other proarans
communicated with, can be very useful, particularly if such a
document 1is created for each system program or module. To this
we can add information on programmers assigned and major
milestones, and then the skeleton of a system plan begins to
form.

The original concept of ESDP assumed the full use of
design interrogation, even in the absence of a progranm
specification. The intent was that a specification would evolve
through repetitive interrogation, and that when the program was
eventually written, it would match well with the design data 1in
structure. The successful use of this concept relies heavily
upon the cooperation and probably enthusiasm of 1its users, for
they must reply to necessarily vague questions, in order to

introduce the program structure to the systen, and must
anticipate the use to be made of their responses in order to
improve future interrogations. It 1is ©possible that design

interrogation will be more effective, at least during the
exploratory phases of developing ESDP, when applied to data
rather than to programs. Data files are definitely of interest
to more than the originating programmer, their design tends to
change often, and changes can have major impact on other users.
Hence, all the communication problems of the system as a whole
exist for data as a subsystem, but the manner of describinag data
structures is perhaps more consistent than for programs, and the
information needed about a file under design is more precise and
generally better agreed upon than for programs. Hence, an option
open to systems managers is to use design interrogation for bhoth
programs and data, for data only, or neither.

Design interrogations 1if used must be repeated at

frequent intervals. Once the basic framework of the system 1is
laid out conflicts and omissions become evident which lead to an

22

almost endless series of changes. Gradually, however, the
structure should begin to stabiliz= and the resultant
documentation should, ideally, be 1identical to that to be
acquired through program analysis. That there will be
dif ferences between plan and execution is certain and for this a
reconciliation process (Section II.6) has been devised.

Automatic dissemination of design documentation can bhe

a powerful management aid. All programmers, desiqgners Aand
managers can see, readily, the current status of the entire
system. Fven more significantly, they can immediately he

apprised of any design changes related to their own areas of
work.

The same interrogation technique used for acgquiring
technical data could be wused for acquiring program status and
other management information. Thus, changes in design and other
factors could be immediately translated into changes in plans.

Figure 2 is an excerpt from a design interrogation. The
interrogation was carried out on an IBM 2260 CRT display
terminal. The text of the first few questions has been retyped
for legible reproduction here.

Fiqure 3 is a copy of the report generated as a result
of the interrogation 1illustrated 1in Figure 2. This is an
abbreviated r2port which results from using a short interrogation
program that was primarily designed for experimenting with
interrogation techniques.

23

THIS IS A PROGRAM DESIGN INTERROGATION 1/1/68

WHAT IS YOUR NAME?
JOHN DOE

WHAT IS THE NAME OF THE UOP YOU WISH TO DISCUSS?
ALTAIRFLD

DESCRIBE THE PURPOSE OF THIS UOP
THTS IS AN ILLUSTRATIVE PROGRAM CONCEPT TOC DEMONSTRATE ESDP
TECHNTIQUES. IT IS BASED ON A FUNCTION THAT MIGHT BE PERFORMFD
BY AN ACTUAL AIR TRAFFIC CONTROL SYSTEM. IT USES PARAMETERS
FOR AN INDIVIDUAL AIRCRAFT, TOGETHER WITH A STORED FILE OF
ATRCRAFT CHARACTERISTICS, TO COMPUTE THE DISTANCE THE PLANFE
CAN FLY WITH ITS REMAINING FUEL. THEN IT SELECTS THE FIRST
ALTERNATE AIRFIELD THAT CAN BE REACHED.

SELECT THE NUMBER THAT BEST DESCRIBES THE LEVEL OF ALTAIRFLD:
l. SYSTFM, 2. JOB, 3. LOAD MODULE, 4. ORJECT MODULE,
5. CALL MODULE, 6. GROUP, 7. SEGMENT

51

SELECT THE LETTER OF THE TOPIC YOU WOULD LIKE TO DISCUSS
A. PURPOSE OF ALTAIRFLD, B. PROGRAM STRUCTURE, C. PROGRAM
CONTROL, D. DATA, E. ERRORS, F. TESTING

B

DO YOU KNOW THE NAME OF A SUPERORDINATE UOP CONTAINING ALTATRFLD
IF SO, GIVE THE NAME, OTHERWISE ANSWER NO
TRAFFIC

Figure 2. SAMPLE INTERROGATION

WOULD YOU LIKE TO A. CONTINUE WITH ALTAIRFLD OR B. DISCUSS TRAFFIC
A

ARE THERE ANY SUBORDINATE UOP CONTAINED IN ALTAIRFLD?
YES

LTST ALL THE 7JOP THAT ARE IMMEDIATELY CONTAINED IN ALTATRFLD +LIST+
INITIAL
DISTCALC
SELECT
QUTPUT
//END

WOULD YOU LTKZ TO TALK ABODUT:
l. INITIAL
2. DISTCALC
SELECT
OUTPUT
OR CONTINUE WITH ALTAIRFLD

‘

NOW SUMMARIZE THE STATIC ORGANIZATION OF ALTAIRFLD, SHOWING THE
RELATIONSHTP OF IT TO TRAFFIC PLUS THE RELATIONSHIP OF:

INITIAL

DISTCALC

SELECT

OUTPUT

TO ALTAIRFLD
ALTAIRFLD IS INVOKED BY A CALL STATEMENT IN TRAFFIC. WITHIN

ALTAIRFLD, INTTIAL, DISTCALC, SELECT, AND OUTPUT ARE INVOKED
SEQUENTIALLY IN THAT ORDER.

Fiqure 2. SAMPLE INTERROGATION {(Concluded)

25

2.1

2.2

4.1

4.2

4.4

TITLE

PAGE INFORMATION

U0OP NAME

ALTAIRFLD

LEVEL

ALTATIRFLD IS A CALL MODULE UOP.

AUTHOR

DATE

JOHN DOE

680118

EXPLANATION OF FUNCTION

PURPOSE

BASIC

THIS IS AN ILLUSTRATIVE PROGRAM CONCEPT TO DEMON-
STRATE ESDP TECHNIQUES. IT IS BASED ON A
FUNCTION THAT MIGHT BE PERFORMED BY AN ACTUAL

ATR TRAFFIC CONTROL SYSTEM. IT USES PARAMETERS
FOR AN INDIVIDUAL ATRCRAFT, TOGETHER WITH A
STORED FILE OF ATRCRAFT CHARACTERISTICS, TO
COMPUTE THE DISTANCE THE PLANE CAN FLY WITH ITS
REMAINING FUEL. THEN IT SELECTS THE FIRST
ALTERNATE AIRFIELD THAT CAN BE REACHED.

FORM OF THIS UOP

SUMMARY

ALTAIRFLD IS INVOKED BY A CALL STATEMENT IN
TRAFFIC, WITHIN ALTAIRFLD, INITIAL, DISTCALC,
SELECT, AND OUTPUT ARE INVOKED SEQUENTIALLY
IN THAT ORDER.

SUPERORDINATE UOP

TRAFFIC

SUBORDINATE UOPS SUB-NAME
INITIAL 1
DISTCALC 2
SELECT 3
OUTPUT +

Figure 3.

ESDP-CAINT PROGRAM DOCUMENTATION FOR ALTAIRFLD

26

LIST OF MODIFICATIONS TO THIS UOP

D MODIFICATIONS
ACTUAL IEN
AIR IEN
ATRCRA IEN
AIRFIE TEN
ALTAIR TEN
ALTERN IEN
BASED IEN
CHARAC TEN
CoOMPUT TEN
CONCEP IEN
DISTAN TEN
DISTCA IEN
ESDP IEN
FILE IEN
FLY IEN
FUEL IEN
FUONCTT IEN
ILLUST IEN
INDIVI IEN
INITTA IEN
TNVOKE TEN
ORDER TEN
OUTPUT IEN
PARAME IEN
PERFOR IEN
PLANE IEN
PROGRA TEN
REACHE IEN
REMAIN IEN
SELECT IEN
SEQUEN IEN
STORED IEN
SYSTEM IEN
TECHNI TEN
TOGETH IEN
TRAFFI TIEN

3.00
3.00
3.00
3.00
4.01
3.00
3.00
3.00
3.00
3.00
3.00
4.04
3.00
3.00
3.00
3.00
3.00
3.00
3.00
4.04
4.01
4.01
4.04
3.00
3.00
3.00
3.00
3.00
3.00
3.00
4.01
3.00
3.00
3.00
3.00
3.00

ALTATIRFLD--REPORT COMPLETED

TEN 4.01

TIEN 4.01

IEN 4.01

IEN 4.04 IEN 4.01

IEN 4.01

Figure 3. FESDP-CAINT PROGRAM DOCUMENTATION FOR ALTAIRFLD

27

(Concluded)

4. Changes in Documentation. Changing existing dJocumentation
vill be the normal mode of operation of ESDP once an initial
program description has been entered. A programmer will not be
asked to repeat previously entered information if he just wants
to enter a change. Changing operates on the principle that the
programmer describes the information element or program element
that is to be changed and analysis or interrogation will be

per formed only on the stated items.

In interrogation the programmer identifies an
information element by number--this being a hierarchic tag
applied to each separable item of information in the files. The
author of the interrogation program will have compiled a list of
questions pertaining to that element. Only these questions will
be asked again and within these prescribed limits, the
reinterrogation may follow a different sequence of questions than
the original. The programmer is not restricted to making changes
at the bottom of the hierarchy. He may specify a high-orier
element which contains many subordinates, and if he does he will
be reinterrogated about all of them.

Program analysis will also operate on an incremental
basis. In this case, the programmer identifies the lowest orier
U0OP not affected by the change and it, and all its members, bhut
no other program components, will be reanalyzed. Here, a problenm
is created. The structure of the program may be so changed that
ESDP 1is wunable to match old UOP's with new, hence cannot treat
newly computed data as changes to an existing structure.
Instead, a parallel structure must be created and the two merged
later by a man-machine process.

5 Incremental Documentation. The term incremental
documentation refers to ESDP's ability to accept changes to
existing documentation without completely regenerating it. Tt is
a feature of ESDP that facilitates production of current
documentation of an object program system as it evolves,
reflecting th= current status of programminag through the stajes
of design, debugging, and modification, with a minimum of effort

by the user.

a. Design Phase

The information in the ESDP documentation files during
the design phase of the object system is entirely derived through
interrogation. Since the files contain no data derived through
program analysis, the incremental documentation for this phase is
wvholly concerned with incremental interrogation.

The purpose of incremental interrogation is to enable
documentors to make changes in documentation files or documents
with a minimum of effort and, at the same time to ensure that
vhen a change is made, all consequences of that change are also
effected. For example, if we were to change the type of a data
item from, say, variable to array, it would be necessary to make
some other implied changes as well, relating to such attributes

28

as length of the array wvwhich would not previously have been
present in the file.

The method, in general, is to write the 1interrogation
progranm S0 that each interrogation element (programming
statements concerned with a question on the elicitation of a
single information element) can be operated as a subroutine or as
a normal part of a normal program. This is done by inserting a
test at the end of the element to see if the program 1is being
operated in the subroutine or sequential mode. If the former,
transfer is made to the calling program; if the latter, control
passes to the next sequential element.

In experimental interrogation we have used a subroutine
linkage, CALL NEXT, as the test at the eni of each element. The
NEXT subroutine determines if the responder 1is involved 1in an
update activity. If so, the element has been used as a
subroutine and control is passed by NEXT back to the point fron
which the element was called. Otherwise, control will be passed
to the next sequential element via a RETURN statement.

The control 1logic for incremental interrogation
essentially revolves around a table of information element

numbers (IEN's) or documentation items, and the interrogation
elements that must be used in order to update the TEN. The user
inputs the TEN, the system looks that number up in the table,
retrieves tha 1list of interrogation elements that mnust bhe
executed, and carries out the interrogation. The newly eliciteq
information 1is 1later merged into the existing documentation

files.

This description has assumed the documentor knows what
IEN's he wants to modify. Such is not always the case. If he
can define the area of interest only in terms of subject matter,
he may wuse the information retrieval system to find those TEN's
that are related to his known subject. He could, then, start an
interrogation with a request to update all documentation
pertaining to input operations from tape units, retrieve the
appropriate IEN's, and then proceed normally.

To carry out a document modification, the system user
must identify the subject <concerned, whether a Unit of
Programming, Unit of Data, Graphic, etc., and the name or number
of that entity. He must then identify the document from which he
is making up this modification. This will have to be sonme
identifiable report, flow chart, retrieval output, or even
message on a CRT, but the system must know what 1is to be
modified. Next he enters the change command, whether aid,

the ensuing interrogation questions.

There is some value in holding changes in a separate
file, at least temporarily, until a change session is completeAd
and the author 1is satisfied he has made all the chanjes
correctly. For system reliability purposes, we should minimize

29

the possibility of a system failure occurring during the posting
of a change to a file. For this reason, it is better to make the
complete chanje, hold it in working storage, then apply it all at
once to the main file.

There are two tables involved in the determination of
what interrogation elements to use for an incremental
interrogation. The Sequence Table (illustrated in Figure 4)
provides a list of interrogation elements for each information
element number (IEN). This list, in work so far, has been in the
form of a set of start and end points for contiquous
interrogation elements, i.e., for a given IEN, we are directed to
start at interrogation element a and continue sequential
operation of the interrogation program until element b is
reached, at which time return is made to the sequencing progranm.
There may be any number of such start-end pairs. There may be
any number of such start-end pairs.

The next list is the one used to convert from report
section numbers, for any ESDP report, to information element
numbers, for use in the Sequencing Table. This requires the
maintenance of a dynamic file that records what information
elements were used and under what report section number, for each
report produced. Since many reports will be working papers only,
the records of these reports will have to be purged periodically,
and when this happens any subsequent changes would have to he
made by wusing a different report as the basis for regenerating
the report.

Report section of information element numbers may have
iniexable components. For example, if Section 1.2 is concerned
with system inputs, the first system input might be described in
Section 1l.2.1, the second in 1.2.2, etc. Then, if the description
of an input starts with its name, the name of the first input
might be filed in element 1l.2.1.1, the name of the second in
l.2.2.1, etc. The third component of these index numbers is the
index of the inputs, and we <call this component of the TEN

In the sequence table, it is neither necessary nor, for
space reasons, desirable to have an entry for each possible value
of an indexable IEN. Accordingly, we have used the technique of
replacing an indexable number in this table with the letter n.
Thus, the IEN for system inputs might be represented in this
table as 1l.2.n, and for all input names as l.2.n.l. In matching
an IEN entered by a documentor, the system treats the n as a
universal match character, and accepts any numeric value for this
component within a legal range for this number. For example, if
he declares his intent to change the description of a data
element identified by IEN 1.2.3, the system would respond, "This
is item SALARY. 1Is this the one you want to change?"

30

IEN Start End Start End

1.1 ;abel | Lahel 2 La;el ; Labe;—;—jjj—-
T P N
L2 ' '
L R
L2 R

la2anel
l.2.n.2
1.2-n+2.1

Nota the use of the symbol n whenever an element
can repeat, with a different IEN each time. Note
also, that there may be any number of indexable
components of any TEN

Figure 4. Sequence Table

31

b. Debugging and Modification Phases

Once code has been written for the object system, ESDP
must contend with both the data derived from interrogation and
that derived from program analysis. When confronted with the
need to modify documentation files to reflect a program change,
ESDP will have in its files the following kinds of data.

(1) Structure
Program structure will be reflected in two dimensions,
hierarchy and process flow. Each UOP may be contained in higher
order, superordinate UOP and may also contain subordinate UOP.
The process-flow dimension relates UOP by possible flows of the
execution of the program. Each UOP may receive control from
predecessor UOP and may pass control to other successor UOP.

(2) Formal Text

This text comprises the original source language object
system program statements.

{3) Data References

The data names used in each UOP will be 1listed. Tn
addition to the names themselves, there will be indicators
depicting attributes and special codes categorizing the data
usage.

(4) Narrative Text

The narrative text that has entered the system via
interrogation is in the ESDP files. Each element of text is
tagged with a variety of identifiers such as the question number
that elicited the text, IEN number, keyworis, associated UOP, or
data names, etc.

(5) Reports

There may also be a number of reports on file. These
will essentially be rearrangements of the narrative text into
various report outlines. In the reports, each element will bhe
identified by the report number plus IEN.

Adding and deleting source program statements can bhe
automatically reflected in the structure files. This is done
through manipulation of pointers. At the same time, however, it
appears that at some point of modification complexity it will be
more economical to rerun the entire program analysis. That 4is,
if a great deal of the program structure is changed it may be
desirable to flush all data with a program analysis source code
and resubmit the program for program analysis.

If we process changes to source programs to update
structure files, we are left with the situation where the program

32

analysis data has been updated automatically and the narrative
text has not. At this point we need to link applicable elements
of text to the program analysis structure, interrogate on new
portions of structure, reinterrogate to elicit changed narrative
or to delete narrative. These operations will be discussed below
under ITI.6, Reconciliation. Our solution to this last step of
linking stored textual data with updated portions of structure is
through use of the reconciliation commands.

6. Reconciliation. Reconciliation is the process of combining
information from more than one source that is descriptive of the
same entity. The assumption is made that there are discrepancies
in the information provided by the different sources. If there
were no discrepancies, reconciliation would be an almost trivial
problem, largely one of merging records. Discrepancies will bhe
in many instances unexpected by the programmer. He will expect a
dif ference when he knows he has written his program to be in some

way different from his current design documentation. Such a
difference simply reflects his failure to update desian
documentation. An unexpected difference arises when the
programmer unknowingly violates his design specifications. His
problem here 1is recognizing that differences exist and

correlating those elements of each data record that do coincide.

Perhaps we should also point out what reconciliation is
not intended to achieve. It is not the intent of ESDP to attempt
automatically to correlate finished programs with design
specifications to determine if specifications have been nmet.
Although this would be an interesting and useful feature this
type of correlation 1is a highly subjective process making
mechanization infeasible. The purpose of reconciliation in ESDP
is to avoid complete duplicate entry of information on the part
of the user. If the system has acquired information about a
program via design interrogations, it 1is reasonable to assume
that at 1least a 1large part of this information will still be
valid once the program is written and, therefore, should be tied
in some way to the files built by program analysis. The
information acquired during design interrogation may not include
all of the details known by the programmer at the time of progranm
analysis. Therefore, an interrogation following program analysis
will be conducted to provide more details and to supply changes
to the design information.

Reconciliation problems exist 1in regard to data
documentation as well as program logic, since many programmers
may use the same data item and each may define it and name it

dif ferently. The analyst responsible for system-wide data
specification and control must reconcile data documentation
acquired from a large number of sources; from design

interrogation or program analysis on each program that uses or
makes reference to a data element. This analyst, unlike the
individual programmer, cannot assess the differences he sees fron
the different sources and resolve conflicts at once. To resolve
a difference 1in interpretation of a data element by two or more
programmers, he must talk to them and assess the impact of a

33

change on each program and on the overall systen.

Data bhase control analysts may add a new version of
data documentation, either to combine and amplify other
documentation or to announce the existence and causes of
conflicts.

This notion of standardized, approved data items hrings
up another consideration. There may be a need for two different
kinds of documentation; one that reflects the current version of
the program and one that reflects the approved version. During
the evolution of the system of programs, there <could be a
requirement for documentation of a program as it exists currently
regardless of whether it still has bugs in it and whether it uses
approved data definitions; there is also a need for documentation
of the design of the program using standardized data definitions.
Therefore, it seems desirable to retain some degree of
duplication throughout the evolution of the object systenm
alt hough, technically, reconciliation could take place early in
the project 1life.

At first glance, it seems that the solution to the
reconciliation problem would be one that is completely automatic.
However, consider the case where two program structures (UOP),
one derived through program analysis and the other derived
through design interrogations, are identical. The 0UOP names are
the same, the subordinate and superordinate elements are the same
and the data wusage 1indicators are the same. But it is still
possible that the logic is different. For example, if the design
specifies that Y = X/2 but the coding is Y = 2/X, then branching
decisions based on the value of Y relative to 1 might bhe
inverted, i.e., if Y <:1. the program would execute the 7JOP
specified for Y > 1.

For another example, assume this hierarchical structure
of a UOP 1illustrated in Fiqure 5. This indicates a Job
containing three Load Modules, one of which <contains three
procedures. FPurther assume that the file created through desian
interrogation shows this structure usinag the indicated names and
associated text descriptions, but has no more structure
information. The file created through program analysis, of
course, goes into a finer substructure but to this point matches
the interrogation-acquired file. It seems certain that this
match 1is not sufficient to conclude that text accumulated to
describe, say, Load Module 1 will necessarily describe Load
Module 1 as it has been coded.

34

PROCEDURE 1

LOAD MODULE 1 PROCEDURE 2
PROCEDURE 3

JOB LOAD MODULE 2

LOAD MODULE 3

Figure S. A Job Structure

35

IIT

DISSEMINATION AND ANALYSIS

: 1 Information Retrieval. ESDP produces two forms of
documentation--hard copy reports and machine readable files. The
later are available for search by an on-line 1information
retrieval system. We foresee the retrieval system being used
either for short-reply queries or occasional special listings.
Otherwise, conventional reports will probably be used. The
actual balance in use of these two programs will depend on user

preference with an operational systenm.

Perhaps the most important use of the retrieval
capability will be to assist programmers who are being
interrogated or instructed. In either case, a terminal operator
will be able to interrupt the programmed conversation to ask a
question, perhaps to check the specification of a data item or to
review an earlier entry of his own. Therefore, one of the key

requirements of the ESDP retrieval system is immediate
responsiveness. Another is that the IR system operate as a
subroutine of any interrogation or instruction program.

Occasionally, the logical niceties of the IR system design have
to be subordinated to these dominating requirements.

In pure documentation applications, the 1logical
requirements of IR are rather modest. We anticipate that most
queries would call out a program element or data item by name and
ask for some attribute of it or, at most, would step through a
network of program elements, using the IR system as a self-
instructional tool. In other wuses of FESDP, though, more
elaborate retrieval logic is necessary. When using the systen
for test planning, or for browsing to find where and how a
proposed change might have to be made, we would expect more of a
requirement than for single, one-item queries. It would s=en
that a multifile search capability is clearly indicated in this

mode of operation. Multifile, 1in this sense, is used to mean
that information from more than one file is needed to evaluate a
search criterion. Most multifile gueries could be accomplished

through a single file search system, with enough time and
patience, but 1lengthy search processes are disruptive of a high
intensity browsing operation.
The files to be searched consist of descriptions of
Units of programming
Units of data

Units of instruction

Program text

36

Management information
Report text and outlines
Wworking storage

File directories.

The first three represent networks and hierarchies
showing structure of programs and data, and interconnection among
structures. Each element of information will have a unijue

(See Section IT.S)

A table of TEN's will be stored for each standard
report to be generated. This table would list the IEN's to be
included and the order of inclusion. Each information element in
a report woulil have an element number of the same form as used
for IEN's but meaningful only in context of the report. For each
report then, there would be a table of equivalences betwaen
report IFEN's and system IEN's. A report covering inputs to all
system programs might renumber IEN 1.2 for program 15 and assiqgn
a report IEN of 3.7.15.

Unplanned reports can be generated at any time by
providing a list of IEN's to be retrieved.

2. Selective Dissemination. We repeat here an earlier
assertion: selective and automatic dissemination of design notes
and chanaes might be the greatest service of ESDP during the
design and production stages of a programming project. Selective
dissemination [6] 1is not a new concept and needs little
elaboration here except to point out that we consider activity
description as well as subject descriptions to be important in
dissemination decisions. This means that a change to TEN 1.2.3,
regardless of the subject matter of the change, would be
disseminated to anyone interested in IEN 1.2.3.

3 Instruction. On a large programming project, turnover of
people and the coming together of people from many different
disciplines <creates a training need which is rarely fulfilled.
What is needed 1is a training program, tailored t o use hy
individual students, that can be used to indoctrinate new peobple
in the system. This requirement is made more difficult by the
frequent <changes in program documentation and by the different
levels of prior knowledge of the system on the part of the

students.

A computer assisted instruction approach has heen
developed which makes maximum use of existing proqgram
documentation and is quite flexible in regard to changes in
course content. The basic approach is to use CAINT as a vehicle
for composing CAI courses. A course aunthor converses with an
ESDP program called the Instruction Generator and, at the
completion of the conversation, an instruction course written in

37

the CAINT Executive Langquage is produced. During the
conversation, the author can easily have the generator extract
whatever information he wants from existing documentation.

The generator program could be written to produce
either computer assisted instruction courses or printed,
programmed instruction courses.

lse of this technique enables training specialists to
compose and maintain up to date, self-instructional material on
all aspects of the object system--whether or not documentation is
complete. New personnel, or people being transferred within a
project can 1learn new functions and bring themselves up to date
at relatively little cost to the project.

The instructional system is described in greater detail
in Volume 3 of this report.

4. Management Analysis. We make the following assumptions when

considering the application of ESDP to programming management.

A Better documentation and dissemination will extend
and improve management control over the project.

b. Management can collect better status and
projection information through interrogation than otherwise.
This information would be more up to date, more precisely
relevant to the actual problems of the moment, and consequently
can reduce problems caused by failure to communicate.

G Having most management data in machine readable
form gives the opportunity for continual review, recomputation of
budgets, schedules, resource allocations, etc.

Part of any interrogation, and this 1is one of the
strongest reasons for having design interrogation on progranms,
should cover the history, the status, and the prospect for that
program. One of the great weaknesses of present day managemant
reporting systems 1is that people using them are free to report
the same information over and over, without detection. For
example, proqgrammers are notorious for reporting that programs
are ninety per cent debugged. Relatively simple programs can
analyze the pattern of responses to management queries and elicit
the necessary explanations. This is not to imply that a
programmer cannot be honestly convinced, on each of five
successive weeks, that he is ninety per cent done. Howevar,
feeding his own history of responses back to him and asking for
his interpretation may lead him to recoqnize that his estimates
are inaccurate, and, hopefully, lead him to improve accuracy. Tn
general, the power of CAINT can and should be used to elicit fron
responders the nature of any problem, recommendations for its
solution, and should provide reviews of previous estimates and
problem descriptions. This assures that information on
management problems 1is written down and is actually transmitted
to those responsible. It also assures subordinates that their

38

problems and recommendations are reaching their managers.

The 1information to be collected relative to progranm
management is variable, as 1is program-descriptive information,
and is to be determined by the using organization. The following
list, though, is representative:

Identification of objective or milestone (e.q.,
completion of a program, a test, a flow chart

ees)

Timesz estimate to complete task
actual time spent to date
review of previous estimates

explanation and discussion of dis-
crepancies or inconsistencies

Manpower: estimate for entire task
manpower expended to date
estimate to complete
review of previous estimates

explanation and discussion of dis-
discrepancies or inconsistencies.

Related milestones or tasks, information on other
tasks dependent upon or prerequisite to this one
which might be affected by a schedule change, or
for which there has been a schedule or other
change.

Special problems being faced, decisions needed
from higher management, recommendations on these
problems, constraints imposed by management or
othar factors such as overall cost 1limitations
final completion deadlines, etc.

We nust stress that, while ESDP provides the
communication medium for the exchange of this information, and
wvhile it can efficiently collect far more detailed managerial
data than is usual, it remains with the project managers to make
the best use of this information. Certainly, any laxity on their
part, or tendency to ignore problems reported in this manner, or
tendency not to take seriously ESDP as a management tool will bhe
immediately reflected 1in the work of others, possibly extending
into technical documentation.

39

IV

EXTENSIONS OF THE BASIC SYSTEM

l. Introduction. The original concept of ESDP was for a systenm
that would ecnable management to control all phases of the
development, operation and modification of computer prograns.
Documentation was 1isolated as the central problem: both one of
the largest tasks and the necessary base upon which other

functions might be based. In this section we present brief
descriptions of additional tasks which ESDP might be extended to
per form and for which would wuse the actual documentation

described elsewhere, or the methodology of ESDP for this
performance.

The first of these extends documentation from programs
and data to program tests, then extends test composition and
documentation into general hypothesis testing. The latter is
concerned with aiding systems management personnel to study the
probable effect of changes in system parameters or logic.

A second major extension is into active computer
assistance in programming, itself, rather than solely into the
documentation of programs and their designs.

2. Computer Assisted Test Design and Hypothesis Testin
Increasingly, in large programming systems, the programmer is
required to provide formal documentation for program testing.
Typically, there may be a requirement for each programmer to
submit a test plan for his individual program and have it
approved by Systems Management before he begins testing. At the
conclusion of his tests, he nmust report on tests actually
conducted and the results thereof. As the project moves into the
system, or assembly, test phase even more complex test plans are
required.

A. Nature of Program Testing

Testing and debugging are complex, 1ill-defined
activities. 1In a large system it is totally impractical to try
each possible input that a program might someday have to process.
Since this is so, after any test period there might be a program
path or combination of circumstances that has remained untested
but would result in an error if executed. One alternative is to
systematically test each thread of a program without attempting
to try each possible combination of subthreads.

As long as a test designer is going to be selective
rather than exhaustive he needs assistance in selecting paths to
be tried. Such assistance should be in the form of help in
determining which control dec¢isions are independent of cach other
{to reduce redundant testing), what paths would be followed if
input and data base values are given, and what data values are
required to reach a given point in a progranm. In the early

40

stages, testing and debugging do not differ. We define as the
dif ference that debugging is a process by which a programmer
convinces himself that his program "works" and testing is a
process by which he formally demonstrates the acceptability of
the program to another person.

During debugging, many errors are detected and changes
made. Hence, debugging operations are set up to assist the
programmer in the rapid detection and correction of errors.
During testing this may happen, but the programmer does not
expect many errors or, presumably, he would not have entered the
test phrase.

In both debugging and testing of individual prograas,
emphasis 1is on systematic testing of paths within a progranm,
usually based on artificially created test 1inputs, sometimes
anachronistically called "test decks.” 1In the later stages of
program testing--system or assembly testing--whenever large
groups of programs are run together, testing is more and more
based on test cases which are defined in terms of overall system
conditions or situations, rather than 1in terms of execution
sequences. In other words, a system test might be set up on the
basis of an externally meaningful test case (e.g., in an air
traffic control system, conditions of runway usage, wind,
weather, and traffic load may be tested, rather than an explicit
test of how programs A, B, and C interrelate).

We have, then, what amounts to a continuum of test
situations, ranging from the typical debugging situation of
testing a small segment of code by itself, through testing of
interactions among programs, to testing a program system's
ability to perform properly on an externally-defined condition.

To plan tests at the detailed end of this spectrum the
programmer needs such information as:

data items in use
initial values needed for a test
output items computed, switches set, etc.,

and these are usually readily identifiable from a glance at the
source coding of a progranm.

As the programmer begins to test branching and
interaction among components of his own program, he is dealing
with much larger sets of code and with more complex interactions,
particularly with interactions not explicitly recognizable from
the text. It is in this area that some of the controversy over
the value of on-line debugging arises, proponents arguing that a
programmer must spend a large amount of time relearning his own
program after each debug run because he cannot retain these
complex interactions in his mind for long. Increasingly, the
programmer is concerned with such gquestions as, "What will happen

41

if the value of X is ___2?" "What value of X will cause a

transfer to 1location Y¥?" "yhat data items are used to compute
the value of X2"

For both individual program testing and for component
testing, the programmer must find the answers to such questions
as, "Under what circumstances will the program branch from
component Y to component Z2?" "If input item X = ____, what thread
will the proqgram follow?" "In what form is data passed/received
between proarams A and B2"

Finally, at the highest 1level of testing, the test
designer 1is concerned with such questions as "What happens when
the operator hits the DELETE key after entering a query?" "How
will the system react to an overload situation?" "What is the
total delay time between the arrival of a given input and 1its
subsequent display on a console?" "what happens if a customer's
balance goes to zero?"

In debugging, questions such as these are asked and
answered informally. In test planning, they must be asked
formally and answered formally, to produce the documentation
required and to assure that all threads are tested and that this
is done at reasonable cost. The information acquired and
produced by ESDP (if expanded and elaborated upon somewhat, but
not basically altered) can answer these questions, and the query,
retrieval, and report generating facilities of ESDP can be used
as the working tool for browsing through this information,
answering questions, and compiling draft notes to be used in
creating test design documentation.

By extending ESDP slightly we can encompass the
preparation of test documentation within ESDP and also provide
means for automatic creation of M"test decks" or program test
data. Preparation of test data is not a difficult conceptnal
problem but it is a practical, clerical problem of some magnitude
which <can be alleviated by a well-designed language specific to
the function, or, as proposed here, by use of CAINT to elicit
requirements and produce data-generatinag code.

The expansion necessary, in the programming area, would
be to increase the amount of detail acquired by program analysis,
particularly in classifying the way in which a data label is used
in a source code UOP, and somewhat modifying the interrogation to
more fully deascribe branching decisions. The symbolic test data
composition program would be similar to a portion of the Lincoln
Checker, [7] part of the utility system developed for use in
SAGE. In addition to these programming steps, considerable work
needs to be done to learn how to make effective use of such
facilities and, possibly, how to assess analytically the validity
of a test plan, 1in terms of completeness, redundancy, or
efficient use of resources.

42

b. Hypothesis Testing

Hypothesis testing is an extension of these <concepts.
In hypothesis testing we assume we have an operating computer
system which we wish to change--by modifying equipment, input
rate, 1load, legal input values, or processing to be performed or
decision rules to be used. Basically, we wish to answer the
question, "what would happen to the existing system if the
following change were made?" or "How will the system respond to
the following change?" We will, then, be assuming some change in
configuration, file content, or program logic, and then tracing
through an existing, presumably correctly functioning, program to
find out what would happen under the hypothesis that some
components have been changed in a specified way. Actually, we
would be trying to find out what changes are needed in the other
components, given a change in one.

Having this <capability would enable a system user,
whose background is more in the operational or application area
of the program system rather than 1in programming itself, to
understand the workings of the system and to a large extent, to
be able to make his own decisions on whether an existing systen
can respond to a request to adapt to a new requirement, how
difficult it would be, etc. In a system of sufficient
complexity, this approach may be the only way these questions can
be answered, and it might be that a joint team of progranmers,
system managers, and system users should interrogate the system
to determine the change requirements. Thus, hypothesis testing
addresses itself to the original problem upon which ESDP was
founded--how to control the orderly evolution of a programming
system as requirements for 1its wuse, or the environment unier
which it operates, changes.

c. Planning a Test

A test plan for a computer program or program module
is, or we believe should be, a plan for a series of program runs
wvhich when <carried out will demonstrate to a disinterested
observer that the program performs according to specifications.
A test plan requires both a systematic plan for testing portions
of the program and a set of test cases that will force the
program to operate as planned. Not all programs are tested in
all combinations of paths or conditions. The completeness of a
test plan varies with the nature of the program and its use.
Often, a test planner, while realizing he is not exhkaustively
testing a program, has no way of knowing exactly what portions he
is testing. Thus, areas left untested are "selected”" at randonm.
Areas that are tested may be overtested. The objective of
applying ESDP to program test planning 1is to give the test
designer control over those variables.

In order to plan a test, the designer must be able to
isolate and describe subsets of the program to be tested in each
trial. We expect the ESDP documentation and approach to proaran
organization to be of great help here. There is more than one

43

way to break down a program but, so long as the various
partitions can be described in terms of UOP's, ESDP allows for
individual variation. Two major variations are: partitioning a
program in terms of what it accomplishes (e.g., adding a new
employee record to the personnel file) or in terms of the
sequence of execution of UOP's (recall that a single command or
program statement can be a UOP). The latter approach to testinq,
systematically probing possible execution sequences is certainly
well adapted to ESDP. The other approach--defining an execution
sequence in terms of accomplishment--can be used as the basis for
testing, with the program reqgion so defined being translatable
into UOP's by use of the ESDP retrieval system. This, in turn,
can lead a search from operational terms to UOP's to execution
sequences., The ESDP retrieval system 1is also capable of
retrieving and displaying a table of information on control
variables for any defined path. This information would becone
the Dbasis upon which the test designer creates his trial data or
test cases.

The generation of test cases, particularly if it is a
matter of initializing a set of core-stored variables (as opposed
to creating and storing a data set on a disk) is not too
difficult but is time-consuming and subject to human error. The
technique used in instruction, of having a CAINT program generate
PL/I code, can be used to assist test-case generation. The kind
of program to be produced would be a relatively simple one that
sets a number of data variables to values specified by the test
designer. His specification would be entered via a CAINT program
which would provide him the information he needs on paths and
UOP's, elicit a test specification, and check the validity of
test values.

This is one of the almost hidden problems of progranm
testing. Given that a programmer intends to test the path fronm
UOP A to B to C, and he thinks he knows what test values he must
use to do so, did he, 1in fact, compose a correct test case?
Using CAINT, each test value can be checked against the
specification for the variable, and all test cases catalogued.
After the program has been run, the values of certain variables
can be <copied and recorded with other test information to
completely document the test.

Returning to the mechanics, a test case interrogation
program would elicit from the test designer the names of UOP's to
test and the test values required. Values for variables would he
checked for conformity with specifications. Then, a test case
generating program would be produced. This would be a PL/I
program to be run just before the test to initialize the stated
variables. If ESDP were to maintain the object system progranm
deck, it could also prepare a small program, to be inserted into
any test module, that would record the values of stated variables
after a test. 1In this way, both interrogation on input and
recording of results would be automatic, saving programmer tinme,
increasing reliability, and increasing credibility of the tost
process.

44

The design of a test would probably proceed somewhat
along these lines. The test designer has a fairly good idea of
the structure of the module he is to test and of the input-to-
output transformation it makes. The test designer is not always
the programmer, so his familiarity may have to be acquired and he
may make haavy use of ESDP's retrieval and instructional
facilities in the process. Presumably, he will then nmake a
decision whether to test on the basis of systematic forcing of
threads in the program or testing in terms of accomplishment or
function, which would require the determination of paths
involved.

To force a path--i.e., to get the program to execute a
specified set of UOP's in a specified sequence, the tester needs
to know what data variables are used in branching decisions, what
variables are used to compute control items, and what input or
output operations are performed. He compiles, for each path or
thread, a set of initial conditions and a list of items that Aare
changing along the path and, of those, which ones he would want
recorded as proof of the text. All this information <can be
recorded with ESDP's facilities and to it should be added some
narrative on the purpose or meaning of the test.

d. Test Priorities
It is not necessary that all trials be completed before

a program can be used. It is often necessary or at least highly
desirable to prove out one portion of a program and use that to

help prove cut another portion. Since not all paths of a1l
programs will be tested, it is necessary to devise some priority
ordering scheme for paths and regions. This priority is not

necessarily inherent in the program but may be a function, as
well, of the program structure, the test conditions, and the
immediate neei for the program either operationally or to support
other tests.

Criteria for priority ordering of paths and regions
should be established by the test designer and thereafter used by
the test assistance programs to help him keep track of what he
has already done and needs to do next and the relative importance
of paths yet to he tested.

An example of the 1logic that might be used 1in
establishing priorities is this. The designer selects a path 1in
the program which represents the main execution path--the
sequence of UOP's to be executed 1in the most straightforward,
error-free situation. If he can get that much tested, he can use
his knowledge that it runs correctly to help debug or test other
portions and can even allow this program to be wused 1in limited
assembly testing while he completes testing of the more obscure
paths. Even to test the "main trunk" he may find it desirable to

pre-test certain frequently-used subroutines. Thus, these
subroutines become first 1in priority. Next <comes the main
execution path which establishes that the main program cycles and
provides output for use by connected programs. Finally, other

45

paths than the main one are attacked. These may be further
classified according to probability of occurrence, support to
debugging and testing, interface with other programs, etc.

At all times during test planning the assistance
program keeps track of what trials have been generated, what
paths or regions are used, and what test data is used. This
information, together with the assistance proqgram's knowledge of
the structure of the test program and of the priorities assigned
to components of it, enables recommendations to be made to the
test designer on what is the most fruitful trial to begin next.

e. Summary

Assistance can be provided to test designers, through
ESDP or extensions of the programs specified to date, 1in the
following ways:

(1) Retrieval and display of information on
program structure and data usage, used to acquire an
understanding of the program and to select paths and regions for
trials.

(2) Assistance in tracing execution paths as a
function of some criterion, e.g., paths that might be followed if
X = 3. Whil2 this task might ultimately be mechanized, it would
probably be a man-machine function at first.

(3) Acgquisition, storage and retrieval of path
and reqgion priority information. The object is to allow each
designer full freedom to assign priorities (or not use the
facilities) as he sees fit, yet make use of the program as easy
as possible.

() Active assistance by the program in
suggesting what paths or regions should next be considered for a
test.

(5) Retrieval and display of information relative
to data values needed to proceed along a given path, into a
region, or to accomplish a stated objective.

(6) Computer assistance in generating test cases
by initializing variables to appropriate values.

(7) Computer assistance in recording data values
during or after a test, and, in general, in documenting test
results.

3. Computer Assisted Programming. Under ESDP we have developed
techniques for describing program and data structures, for
eliciting information from a programmer about proposed programs
and data files and for analyzing programs once written. From
these analytic and elicitation programs documentation of progran

systems 1is created. Also as part of ESDP, a program has been

46

]

produced which converses with a program author and produces an
output which 1is a syntactically correct PL/I program to be used
for instructional purposes. These techniques can be combined and
generalized to produce a conversational program which <can carry
on an English-language conversation with a programmer and produce
programs of far more general structure than that of the
instructional programs generated so far.

The approach would be somewhat the same as now used for
documentation. The programmer is first interrogated on his
design and, in succeeding interrogations, he enters increasingly
more detailed design information. At any time, the programmer
may request to be switched into the program composition mode
vhich is really nothing more than a far more detailed design
interrogation.

The existence of design information, written by the
programmer, provides the ESDP system with information that can be
used to search a library of available routines and one of known
program models. From either or both these libraries, the proaram
can retrieve information on which to base more detailed
interrogations of the programmer. For example, 1if the desiqgn
information specifies that a sort is to be performed, the CEL
program can ra2trieve information about sort programs from 1its
library. It detects the relevance of sort programs by a key word
analysis of the programmer's responses to documentation
questions. With the additional knowledge, it retrieves, it can
make further checks against the parameters of existing progranm
modules. If, for example, it discovers that the programmer
wishes to sort a table that is stored in core, the interrogation
program will try to find such an internal sort program in 1its
library. If it does, little more may be needed than to evaluate
a calling sequence. If no program exactly fits, one can be
composed either in programming language statements or in terms of
smaller modules or macro-instructions. The less prior
information that is available, clearly, the less the computer 1is
able to help write the program. Ultimately, if the programmer
vishes to compose a program bearing no detectable relationship to
any program known to the system, he must write it more or less in
the normal manner. Computer assistance <can still be used,
however. His statements can be syntactically checked as they are
entered and documentation, both from interrogation and program
analysis, can be built up as the program is composed. This gives
the programmer instant review capability, always with fairly
complete documentation, on all completed portions of the progranm.

The greatest value to be derived from this system would
come when there is prior information about the type program to be
written. If not available as parameter descriptions for an
existing program, this information might be largely in the form
of object models, or generalized program specifications, to he

detailed by a programmer.

The object model is a set of information descriptive of
a wide class of object programs, such as sort programs oOr

47

instructional progranms. The model gives the general structure
and limitations and names elements that must be specified for any
particular member of the class, or implementation. In the
instruction program class, this includes questions, anticipated
answers, and branching commands. The Generator program operates
through the object model, acquiring from that model both the
questions it needs to ask the program designer and the
information it needs to analyze his answers.

Use of the object model 1in conjunction with a
generalized Generator (which, recall, 1is a CEL interrogation
program) is analogous to an information retrieval program which
makes use of file directories or format tables. By using tables
vhich describe the data files handled by the retrieval systenm,
the retrieval programs can be made quite general. They always
refer to the directory to determine how to interpret any file.
Hence, it is not necessary to modify a program when changing the
structure of a file. It 1is only necessary to change the
directory's description of the file and the program adapts itself
to the new structure. Similarly, the Generator will perform the
functions specified by the object model so that the Generator
need not be modified to change from producing one type program to

another. Probably, the more experienced programmers would
provide the models and less experienced programmers would add the
detail. Early in the development of a large system, the senior
designers would <contribute specifications 1in the form of
documentation and object models. These models can be
successively more detailed as they are passed down the chain of
command to less experienced people. The major difference in

approach here over what is proposed for documentation purposes is
that at the design documentation level, designers supply not only
known information but describe what additional information has to
be provided in order to proceed to the next level of detail.

To implement this system, a conversational progranm
would be required whose inputs are an object model and a set of
user responses entered through a remote terminal. The output
would be a computer program in a specified programming language,
such as PL/I, ready for compilation and guaranteed to compile.
There will be no syntax errors in the object code. Clearly,
vhether or not there are logical errors depends, as usual, on the
designer.

A simplified, preliminary model exists and is at this
date partially operational. This is the Instruction Generator
previously mentioned (Section I.4) which has as its sole aim the
generation of instructional (CAI) programs. Such programs have a
far simpler structure than most computer programs. Still, the
concept is basically the same, and the programming techniques
used to generate object code from English lanquage conversation
are directly applicable to the larger, more general problem.

The Generator would enable a user who is not trained in

computer programming to write programs with relative ease. Tse
of the Generator could also 1increase the effectiveness to

48

~

4

ae

technical personnel who need programs to support their own work.

Examples of such people are engineers or scientists, not
professional programmers, who nonetheless need data processing
services. Other examples are professional computer programmers

who must cope with the mysteries of a new operating system 1in
order to accomplish their own tasks. That is, they are users of
an operating system in the same sense that an engineer is a user
of FORTRAN.

49

[1]

[2]

(3]

[4]

(5]

[6]

[7]

v

BIBLIOGRAPHY

Meadow, Charles T. and Douglas W. Waugh, "Computer Assistedqd
Interrogation,” AFIPS Conference Proceedings 1966 Fall
Joint Computer Conference, Spartan Books, Washington, D. C.,

Mills, Harlan D. and Michael Dyer, "“Evolutionary Systems for
Data Processing," in Proceedings of the Real Time Systenms

Seminar, IBM Corporation, Houston, Texas, November 2-4,
1966.

_ System/360_ FLOWCHART {360A-SG-22X) Application
Description, Form H20-0199, IBM Corp., White Plains, N.Y.,

—— e e me e e ——

I3M 7090/94 AUTOFLOW System, User's and Operator's

Manual, Applied Data Research, 1Inc., Washington D.C.,

February, 1967, under NASA contract no. NASS5-10021.

IBM System/360 Operating Systenm. Queued

Telecommunications Access Method, Form C30-2002, IBM Corp.,
White Plains, N.Y., 1967.

AR s T

eneral
ation

Information Manual: Selective Dissemination
, Brochure E20-8092, I8M Corp., White Plains,

¢ G
nto
9

= |0

£

~ |4

£
1

=i}

m
X 62
Hill, A., Checker Manual, Doc. No. 6M 4007, MIT Lincoln
Laboratory, Lexington, Mass., Dec. 7, 1956.

50

x

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

I&;}(\;;;: Tflgl? é;’l’pll\lol;ét(oc;fy‘pogﬂtfa l.il:lgr) 2a. REPORT SECURITY CLASSIFICATION
Internation Business Machines Corporation ~ GRQEJPNCLASSIHED
Rockville, Maryland 20850 N/A

3. REPORT TITLE
EVOLUTIONARY SYSTEM FOR DATA PROCESSING
SYSTEM DESCRIPTION

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

January 1968

5. AUTHOR(S) (First name, middle initial, last name)

Charles T. Meadow GCerald F. Conklin
Douglas W. Waugh Forrest E. Miller

6. REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS
January 1968 55

8a. CONTRACT OR GRANT NO. 9a8. ORIGINATOR'S REPORT NUMBER(S)
bFl9628-67-C-0254 ESD-TR-68-143, VolI. |
c, 9b. ‘oh"rerEeso:QSPORT NO(S) (Any other numbers that may be assigned
d.

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited.

11. SUPPLEMENTARY NOTES 12._SPONSORI MILlTARYﬁ.CT.I VITY .
ommand Systems Division, Electronic Systems

Division, Air Force Systems Command, USAF,
L G Hanscom Field, Bedford, Mass. 01730

13. ABSTRACT
ESDP is a proposed system whose purpose is to acquire, store, retrieve, publish and disseminate

all documentation, exclusive of graphics, concerned with a large computer programming activity.
Documentation is deemed to consist, not only of final or formally published after-the-fact reports,
but of working files, design and change notices, informal drafts, management reports -in fact, the
entire recordable rationale underlying a programming system. Maximum attention has been con-
centrated on the means of acquiring and organizing documentation. Two major, complementary
approaches are proposed. The first is called Program Analysis and is a process of extracting
documentation directly from completed programs. The second is called Computer Assisted Inter-
rogation and is a process of eliciting information directly from the programmer, through on-line
communication terminals. The former provides canonical data about the program's structure. The
latter provides explanatory material about all aspects of the program, and in the absence of
canonical data, may provide tantative structural information as well. The conclusion of the study
group is that ESDP is a feasible concept with present-day technology and that it will materially
benefit using organizations in the production of programs and in guiding their evolution as require- .
ments change. lts value will be greater for larger organizations, whose internal communications
difficulties tend to cause truly gigantic inefficiencies. Its implementation as a support system for
such projects would require a significant guantum of investment in order to produce these benefits
and is predicated on the use of a computer system dedicated solely to the use of ESDP.

DD IFNOORVM651473 Unclcssified

Security Classification

